
Two initiatives

1) ACCSS working group on Software Security

Synergy with INTERSCT, C-SIDE and VERSEN

Contact Olga Katyatskaya

2) ACCSS PhD group as part of CSng

Synergy with research schools IPA,SIKS, ASCI?

Contact Cristian Daniele

1

S

Fuzzing important as

• quality assurance technique in WP2 Design

Here Design = Design + rest of SDLC

• bug hunting technique in WP4 Attacks

2

Fuzzing Stateful Systems

Seyed Andarzian, Cristian Daniele, Erik Poll

Digital Security

Radboud University Nijmegen

Fuzzing stateless vs stateful systems

Stateless SUT

• Eg pdfviewer, graphics library

• Looking for parsing bugs

Stateful SUT

• Eg TCP, SSH, WhatsApp

• Two aspects that can be fuzzed:

1) the messages

2) the order of messages

• Looking for a) parsing bugs and b) program logic bugs

With fuzzing we normally look for crashes & hangs. For stateful SUTs

deviations in state behaviour may be interesting bugs, too

Seyed Andarzian, Cristian Daniele, Erik Poll 4

System

Under

Test

m1

m2

m3

...

t1 = m1 ; m2 ; m3

t2 = m4 ; m5

t3 = m1 ; m’2 ; m’3

...

SUT

m1 m2

m3

m2

Different kinds/origins of state behaviour

• an initialisation phase

• application menu or directory structure

• application dialogue or protocol

• incl. protocol for access control

• incl. crypto protocols, eg TLS

These categories overlap and can be combined

Seyed Andarzian, Cristian Daniele, Erik Poll 5

Security-by-Design: LangSec

Prevention of input handling bugs by LangSec (language-theoretic security)

1. Provide clear, unambiguous, formal spec of simple input protocol

2. Generate code

Eg using Verum Dezyne for protocol state machine.

People don’t do this, which is why fuzzing is such a great success

More info: LangSec.org or DARPA SafeDocs

Seyed Andarzian, Cristian Daniele, Erik Poll 6

Message format Protocol state machine

Fuzzers for stateful systems

• Not that many stateful fuzzers around

compared to stateless, see https://fuzzing-survey.org

but wide variety in (combination of) approaches

• State space is obviously complicating factor

(Bigger) combinatorial explosion:

not just strange messages, but also strange sequences of messages

Associated coverage criterion: state machine coverage

• Very slow (a few tests/sec, not thousands tests/sec) due to

1. overhead of network stack

2. having to repeat initial prefix to reach ‘interesting’ state

Seyed Andarzian, Cristian Daniele, Erik Poll 7

Survey “Fuzzers for Stateful Systems” [arXiv:2301.02490, 2023]

7 categories of stateful fuzzers

• Grammar-Based fuzzers

• Evolutionary fuzzers

• Evolutionary Grammar-Based Fuzzers

• Grammar Learner Fuzzers

• Evolutionary Grammar Learner Fuzzers

• Machine Learning Based Fuzzers

• Man-in-the-middle Based Fuzzers

Seyed Andarzian, Cristian Daniele, Erik Poll 8

• Grammar-based

user provides grammar for state machine & message format

• Grammar Learner

grammar inferred from traces, eg using passive learning

Grammar-based & grammar learner fuzzers

Seyed Andarzian, Cristian Daniele, Erik Poll 9

Fuzzer SUTGrammar

Passive learning Fuzzer SUTGrammarTraces

Evolution (i)

• Evolutionary: mutation of inputs (messages and/or sequences) guided

by feedback from SUT

a) observing branch coverage like afl (nyx-net, SPNS fuzzer)

b) observing program variables:

manually annotated (IJON) of automatically inferred (SGFuzz)

• Can be combined with grammar-based:

evolutionary grammar-based (RESTler, SPFuzz, EPF)

Seyed Andarzian, Cristian Daniele, Erik Poll 10

Fuzzer SUT

Feedback (i)

Fuzzer SUT
Grammar

Evolution (ii)

• We can also use feedback to infer/improve the grammar,

esp. the state machine: evolutionary grammar learner

• e.g. system response as feedback (LearnLib/L* aka active learning)

• This can be combined with feedback (i) to mutate messages (aflnet)

Seyed Andarzian, Cristian Daniele, Erik Poll 11

Fuzzer SUT
Grammar

Feedback (ii)

Fuzzers for Stateful Systems [arXiv:2301.02490, 2023]

Feedback I Feedback II Requires Based on/uses

GRAMMAR-BASED Grammar

Peach, SNOOZE, Sulley, PROTOS, AspFuzz, ... "

BooFuzz " Sulley

Fuzzowksi " BooFuzz

GRAMMAR LEARNER Traces & ...

Hsu et al. message grammar Passive learning

Pulsar Passive learning

Glade Active learning

EVOLUTIONARY Traces & ...

nyx-net Coverage protocol spec AFL

FitM fuzzer Coverage client and server binary AFL

SNPS fuzzer Coverage AFL

Chen et al. Coverage & Branches source code AFL, manual code annotation

IJon Coverage & Variables source code AFL, manual code annotation

SGFuzz Coverage & Variables source code AFL, automatic code annotation

EVOLUTIONARY GRAMMAR-BASED Grammar

RESTler Response "

SPFuzz Coverage " AFL

EPF Coverage " AFL & Fuzzowski

EVOLUTIONARY GRAMMAR LEARNER

AFLnet Coverage Response Traces AFL

FFUZZ Coverage Response Traces AFL, AFLNet

StateAFL Coverage Memory Traces AFL

SGPFuzzer Coverage Memory Traces AFL

LearnLib Response Set of messages L*

Doupé et al. Response None Web application crawling

ML-BASED Traces

GANFuzz " seq2seq

Fuzzing of Network Protocols " seq2seq

SeqFuzzer " seq-gan

MAN-IN-THE-MIDDLE Live traffic

AutoFuzz " Passive learning

Live Protocol Fuzzing "

SECFUZZ "

12

Active Learning

aka

State Machine Learning

Seyed Andarzian, Cristian Daniele, Erik Poll 13

Active Learning aka State Machine Inference

Just try out many sequences of inputs, and observe outputs

Eg. suppose input A results in output X

• If second input A results in different output Y

• If second input A results in the same output X

Now try more sequences of inputs with A, B, C, ...

to e.g. infer

The inferred state machine is an under-approximation of real system

First algorithm for this, L* [Angluin 1987], implemented in LearnLib

14

A/X

A/X

A/X A/Y

B/error

A/X B/Y C/X

A/error A/error

B/error

Active Learning (using L* implemented in LearnLib)

• Active learning is limited form of stateful fuzzing:

we only fuzz the message order, not the messages

• Used on many case studies to reveal surprising differences,

incl. some security flaws

• eg TCP, SSH, TLS, EMV bankcards, ABN-AMRO e.dentifier,

DTLS, QUIC, IEC 60870-5-104, MQTT

15

Different TLS implementations

16

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

TLS 1.3 [RFC 8446, 2018]

17

State machines inferred for flawed & patched device

[Georg Chalupar et al., .Automated reverse
engineering using Lego, .WOOT 2014]

Movie at http://tinyurl/legolearn

18

State machine learning for e.dentifier2

scary state machine complexity

19

20

Green Fuzzer [work by Seyed Andarzian]

Improving the speed of stateful fuzzing by

1. reducing overhead of network stack,

by replacing network stack with simulated network stack

Seyed Andarzian, Cristian Daniele, Erik Poll 21

Fuzzer SUT

network network Preeny+

Fuzzer SUT

Preeny+

Green Fuzzer [work by Seyed Andarzian]

Improving the speed of stateful fuzzing by

1. reducing overhead of network stack,

by replacing network stack with simulated network stack

2. reducing the overhead of context switching between SUT & fuzzer:

instead of sending one message at the time, send whole trace

Seyed Andarzian, Cristian Daniele, Erik Poll 22

Fuzzer

SUT

t = m1 ; m2 ; m3

r1 ; r2; r3
Agent

m1 r1 m2...
m1

m2

m3

r1

r2

r3

Fuzzer SUT

Preeny+

Green Fuzzer [work by Seyed Andarzian]

Improving the speed of stateful fuzzing by

1. reducing overhead of network stack,

by replacing network stack with simulated network stack

2. reducing the overhead of context switching between SUT & fuzzer:

instead of sending one message at the time, send whole trace

Performance results, messages/sec, on ProFuzzBench case studies

Seyed Andarzian, Cristian Daniele, Erik Poll 23

AFLnet Desock+ speed-up Agent speed-up

lightFTP 12 49 300% 64 30%

dnsmasq 15 19 30% 19 0%

live555 14 29 100% 31 10%

dcmqrscp 17 21 20% 25 20%

tinydtls 82 19 60% 34 80%

• Afl has fast persistent mode to speed up fuzzing

Basic idea: modify SUT so that it can be fed multiple inputs in a row,

without restarting (or forking)

• This (obviously!) can be used for fuzzing stateful systems too

• If one of the messages effectively resets the SUT, then we never

have to restart it; otherwise we still do

Afl* [work in progress by Cristian Daniele]

Seyed Andarzian, Cristian Daniele, Erik Poll 24

SUT

restart SUT; m3

restart SUT; m2

m1
m1 ; m2 ; m3 SUT’

Performance results for LightFTP

Very fast but not very deep; reaching & fuzzing deeper states will require

guidance by smarter strategies.

Open question:

is afl-style branch coverage a good way to observe state coverage?

Afl* [work in progress by Cristian Daniele]

Seyed Andarzian, Cristian Daniele, Erik Poll 25

Speed Time to find bug 1 Time to find bug 2

AlfNet 9 messages/sec > 24 hr >24 hr

Afl* 34000 messages/sec 1m 50s 15m 27s

Conclusion and open problems

• Other/better combinations?

• More cases studies: OPC-UA, 5G

• Benchmarking?

Comparing stateful fuzzers is hard; big variety in SUT state machines.

ProFuzzBench only compares speed

• Fuzzer-friendliness?

Implementations can (should?) be made more fuzzer-friendly, e.g.

• options to turn off cryptographic checks

• identification of central loop for persistent fuzzing

• for stateful systems: adding a reset operation for testing?

Seyed Andarzian, Cristian Daniele, Erik Poll 26

	Slide 1: Two initiatives
	Slide 2: S
	Slide 3: Fuzzing Stateful Systems
	Slide 4: Fuzzing stateless vs stateful systems
	Slide 5: Different kinds/origins of state behaviour
	Slide 6: Security-by-Design: LangSec
	Slide 7: Fuzzers for stateful systems
	Slide 8: Survey “Fuzzers for Stateful Systems” [arXiv:2301.02490, 2023]
	Slide 9: Grammar-based & grammar learner fuzzers
	Slide 10: Evolution (i)
	Slide 11: Evolution (ii)
	Slide 12: Fuzzers for Stateful Systems [arXiv:2301.02490, 2023]
	Slide 13: Active Learning aka State Machine Learning
	Slide 14: Active Learning aka State Machine Inference
	Slide 15: Active Learning (using L* implemented in LearnLib)
	Slide 16: Different TLS implementations
	Slide 17: TLS 1.3 [RFC 8446, 2018]
	Slide 18: State machine learning for e.dentifier2
	Slide 19: scary state machine complexity
	Slide 20
	Slide 21: Green Fuzzer [work by Seyed Andarzian]
	Slide 22: Green Fuzzer [work by Seyed Andarzian]
	Slide 23: Green Fuzzer [work by Seyed Andarzian]
	Slide 24: Afl* [work in progress by Cristian Daniele]
	Slide 25: Afl* [work in progress by Cristian Daniele]
	Slide 26: Conclusion and open problems

